
Nathanael Bosilia, Gerald Weinberger and Philipp Haindl

Assessing the Impact of
Asynchronous Communication
on Resilience and Robustness
A Comparative Study of
Microservice and Monolithic Architectures

1

Introduction
• The Problem: One configuration error in a monolithic application 
→ entire system down due to tight coupling

• Research Question: Does async communication in microservices improve
resilience/robustness vs. monolithic systems?

• Method: Chaos Engineering on two equivalent e-commerce systems

2

Related Work
• Performance & scalability comparisons: Microservices excel in distributed

environments but degrade after certain instance count

• Communication patterns: Event-driven architectures show 19% faster
response time and 34% lower error rate (Rahmatulloh et al.)

• Quality attributes & design patterns:  
Focus on availability, monitorability, security, testability

• Gap: No empirical fault tolerance comparisons  
under controlled failure conditions

3

Chaos Engineering
• Definition: Controlled fault injection under load to prove resilience

• Key Questions: Fail fast? Degrade gracefully? Cascade?

• Our Approach: Chaos Mesh for Kubernetes pod  
termination during high-load traffic

4

Methods
• Systems:

• Monolith: Single Spring Boot app + 1 shared PostgreSQL database

• Microservices: 3 independent services + Kafka + 3 dedicated databases

• Same Business Logic: Order → Shipment → Notification

• 3 Experiments:
#1: Baseline - 20 virtual users, 2 minutes, no failures

#2: Entry-point failure - constant 10 req/sec, up to 40 virtual users, 2 minutes

#3: Random internal failure - same load pattern as Experiment 2

• Metrics: Orders processed, failure rate, response time

5

6

7

• Baseline Performance (No Failures):

• Throughput: 509.19 req/sec (microservices) vs 178.41 req/sec (monolith) = ~3× higher

• Response Time: 39.18ms (microservices) vs 112.11ms (monolith) = ~3× faster

• Entry-Point Failure Results:

• Orders Processed: 984 (microservices) vs 956 (monolith)

• Failure Rate: 18.04% vs 20.35% = 2.3 percentage points lower

• Response Time: 33.58ms vs 59.57ms = 43% faster

• Random Internal Failure Results:

• Failure Rate: 7.88% (microservices) vs 20.35% (monolith) = 12.47 pp lower

• Response Time: 24.87ms vs 59.57ms = 58% faster

• Key Insight: Kafka buffers work, services fail independently

Results

8

Discussion
• Proven Benefits:

• Fault isolation: Failures stay local, don't cascade

• Lower failure rates: Up to 12 percentage points improvement

• Buffered resilience: Kafka absorbs turbulence vs. synchronous propagation

• Real Trade-offs:

• Resource footprint: ~3× higher operational overhead

• Complexity: Multiple services + databases + Kafka cluster

• Skills required: Distributed tracing becomes mandatory, not optional

• Operational costs: Higher due to distributed infrastructure

• Decision Framework:

• Critical systems (downtime = thousands/minute) → worth it

• Internal tools/MVPs → stick with monolith

9

Conclusion
• Anecdote Callback:  

Event-driven microservices would likely have prevented the canteen outage

• Key Numbers to Remember:

• ~3× throughput improvement (509 vs 178 req/sec)

• ~3× faster baseline latency (39ms vs 112ms)

• ~12 percentage points lower failure rate under random failures

10

Requirements, not trends,
should guide your architecture.

