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Microservice and Monolithic Architectures
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Introduction

 The Problem: One configuration error in a monolithic application
— entire system down due to tight coupling

 Research Question: Does async communication in microservices improve
resilience/robustness vs. monolithic systems?

 Method: Chaos Engineering on two equivalent e-commerce systems
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 Performance & scalability comparisons: Microservices excel in distributed
environments but degrade after certain instance count

« Communication patterns: Event-driven architectures show 19% faster
response time and 34% lower error rate (Rahmatulloh et al.)

* Quality attributes & design patterns:
Focus on avallability, monitorability, security, testability

 Gap: No empirical fault tolerance comparisons
under controlled failure conditions
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Chaos Engineering e

* Definition: Controlled fault injection under load to prove resilience
 Key Questions: Fail fast? Degrade gracefully? Cascade?

 Our Approach: Chaos Mesh for Kubernetes pod
termination during high-load traffic
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 Systems:
* Monolith: Single Spring Boot app + 1 shared PostgreSQL database

* Microservices: 3 independent services + Kafka + 3 dedicated databases

« Same Business Logic: Order = Shipment — Notification

3 Experiments:

#1: Baseline - 20 virtual users, 2 minutes, no failures
#2: Entry-point failure - constant 10 reg/sec, up to 40 virtual users, 2 minutes

#3: Random internal failure - same load pattern as Experiment 2

 Metrics: Orders processed, failure rate, response time
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Results

 Baseline Performance (No Failures):
 Throughput: 509.19 reg/sec (microservices) vs 178.41 reg/sec (monolith) = ~3x higher
 Response Time: 39.18ms (microservices) vs 112.11ms (monolith) = ~3x faster
 Entry-Point Failure Results:
* Orders Processed: 984 (microservices) vs 956 (monolith)
* Failure Rate: 18.04% vs 20.35% = 2.3 percentage points lower
* Response Time: 33.58ms vs 59.57ms = 43% faster
 Random Internal Failure Results:
* Failure Rate: 7.88% (microservices) vs 20.35% (monolith) = 12.47 pp lower
* Response Time: 24.87ms vs 59.57ms = 58% faster

* Key Insight: Kafka buffers work, services fail independently
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Discussion

* Proven Benefits:
* Fault isolation: Failures stay local, don't cascade
* Lower failure rates: Up to 12 percentage points improvement
* Buffered resilience: Kafka absorbs turbulence vs. synchronous propagation
* Real Trade-offs:
* Resource footprint: ~3x higher operational overhead
 Complexity: Multiple services + databases + Kafka cluster
* Skills required: Distributed tracing becomes mandatory, not optional
* Operational costs: Higher due to distributed infrastructure
* Decision Framework:
* (Critical systems (downtime = thousands/minute) — worth it

* |nternal tools/MVPs — stick with monolith
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Conclusion e

 Anecdote Callback:
Event-driven microservices would likely have prevented the canteen outage

« Key Numbers to Remember:
 ~3x throughput improvement (509 vs 178 req/sec)
» ~3x faster baseline latency (39ms vs 112ms)

e ~12 percentage points lower failure rate under random failures
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Requirements, not trends,
should guide your architecture.




