weae CUDRES

EEEEEEEEEEEEEEEEEE

Assessing the Impact of
Asynchronous Communication
on Resilience and Robustness

A Comparative Study of
Microservice and Monolithic Architectures

Nathanael Bosilia, Gerald Weinberger and Philipp Haindl



[ Informatik Ithill

& Security st.pélten

UNIVERSITY OF
APPLIED SCIENCES

Introduction

 The Problem: One configuration error in a monolithic application
— entire system down due to tight coupling

 Research Question: Does async communication in microservices improve
resilience/robustness vs. monolithic systems?

 Method: Chaos Engineering on two equivalent e-commerce systems

vere EDRES 2

EUROPEAN UNIVERSITY



[ Informatik Ithill

& Security st.pélten

Related WO rk RS Or

 Performance & scalability comparisons: Microservices excel in distributed
environments but degrade after certain instance count

« Communication patterns: Event-driven architectures show 19% faster
response time and 34% lower error rate (Rahmatulloh et al.)

* Quality attributes & design patterns:
Focus on avallability, monitorability, security, testability

 Gap: No empirical fault tolerance comparisons
under controlled failure conditions

weae CUDRES



[ Informatik Ithill

& Security st.pélten

IIIIIIIIIIII

Chaos Engineering e

* Definition: Controlled fault injection under load to prove resilience
 Key Questions: Fail fast? Degrade gracefully? Cascade?

 Our Approach: Chaos Mesh for Kubernetes pod
termination during high-load traffic

weae CUDRES



Ilnformatik Ifh ”I

& Security st.pélten

UNIVERSITY OF
e O S APPLIED SCIENCES

 Systems:
* Monolith: Single Spring Boot app + 1 shared PostgreSQL database

* Microservices: 3 independent services + Kafka + 3 dedicated databases

« Same Business Logic: Order = Shipment — Notification

3 Experiments:

#1: Baseline - 20 virtual users, 2 minutes, no failures
#2: Entry-point failure - constant 10 reg/sec, up to 40 virtual users, 2 minutes

#3: Random internal failure - same load pattern as Experiment 2

 Metrics: Orders processed, failure rate, response time

weae CUDRES

EUROPEAN UNIVERSITY 5



Ilnformatik Ifh ”I
& Security st.polten
traffic ——— HTTP POST /orders ~ UNIVERSITY OF

’_— ———————————————————————————————————————————————————————————————
~

' f Monolithic Application \
[ create ](
(- | Order
% _@_) [ create
|

Chaos Mesh (- Shipment

v

send
Notification

\-

N R R W W W W R R W R W MR W MR R R R MR R R R R R R R R R R R e e e e e e e e e e
M e e M R W R R R R R R R R R R R R R R W e e e e e e e e e e we o we e e e e e e e e ™

~
o e e G G G G G EE EE GE G G G G G EE G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G e e e e e s wm = T

weae CUDRES

EUROPEAN UNIVERSITY 6



weae CUDRES

EUROPEAN UNIVERSITY

e
.~

traffic

(

[

create
Shipment

J

(1) N

(2)

\

send order

notification <

J

.

‘ send shipment

<

notification

7

/® Notification Service

HTTP POST /orders

- e e e e e e e R e R e e R e e e e e e e e e e e e e e e e e e e e e e e e R R R R R R R R R e e e e e e e e e e e e e e e e e e e e e e R R R R R R R e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
- -

4 Shipping Service ®\

/

Chaos Mesh

.

Ordering Service ®\

‘ create
J( 1) Order

)

L

A

I Informatik
& Security

Ithill

st.polten

UNIVERSITY OF
APPLIED SCIENCES



Ilnformatik Ifh ”I

& Security st.pélten

UNIVERSITY OF
APPLIED SCIENCES

Results

 Baseline Performance (No Failures):
 Throughput: 509.19 reg/sec (microservices) vs 178.41 reg/sec (monolith) = ~3x higher
 Response Time: 39.18ms (microservices) vs 112.11ms (monolith) = ~3x faster
 Entry-Point Failure Results:
* Orders Processed: 984 (microservices) vs 956 (monolith)
* Failure Rate: 18.04% vs 20.35% = 2.3 percentage points lower
* Response Time: 33.58ms vs 59.57ms = 43% faster
 Random Internal Failure Results:
* Failure Rate: 7.88% (microservices) vs 20.35% (monolith) = 12.47 pp lower
* Response Time: 24.87ms vs 59.57ms = 58% faster

* Key Insight: Kafka buffers work, services fail independently

weae CUDRES

EUROPEAN UNIVERSITY 8



Ilnformatik Ithilll

& Security st.pélten

UNIVERSITY OF
APPLIED SCIENCES

Discussion

* Proven Benefits:
* Fault isolation: Failures stay local, don't cascade
* Lower failure rates: Up to 12 percentage points improvement
* Buffered resilience: Kafka absorbs turbulence vs. synchronous propagation
* Real Trade-offs:
* Resource footprint: ~3x higher operational overhead
 Complexity: Multiple services + databases + Kafka cluster
* Skills required: Distributed tracing becomes mandatory, not optional
* Operational costs: Higher due to distributed infrastructure
* Decision Framework:
* (Critical systems (downtime = thousands/minute) — worth it

* |nternal tools/MVPs — stick with monolith

vere EDRES 9

EUROPEAN UNIVERSITY



[ Informatik Ithill

& Security st.pélten

IIIIIIIIIIII

Conclusion e

 Anecdote Callback:
Event-driven microservices would likely have prevented the canteen outage

« Key Numbers to Remember:
 ~3x throughput improvement (509 vs 178 req/sec)
» ~3x faster baseline latency (39ms vs 112ms)

e ~12 percentage points lower failure rate under random failures

weae CUDRES

EEEEEEEEEEEEEEEEEE 10



weae CUDRES

EEEEEEEEEEEEEEEEEE

& Security G LUEL

Requirements, not trends,
should guide your architecture.




